130 research outputs found

    Cut Elimination for a Logic with Induction and Co-induction

    Full text link
    Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and co-induction. These proof principles are based on a proof theoretic (rather than set-theoretic) notion of definition. Definitions are akin to logic programs, where the left and right rules for defined atoms allow one to view theories as "closed" or defining fixed points. The use of definitions and free equality makes it possible to reason intentionally about syntax. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and co-inductively about properties of computational system making full use of higher-order abstract syntax. Consistency is guaranteed via cut-elimination, where we give the first, to our knowledge, cut-elimination procedure in the presence of general inductive and co-inductive definitions.Comment: 42 pages, submitted to the Journal of Applied Logi

    A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search

    Full text link
    We present a labelled sequent calculus for Boolean BI, a classical variant of O'Hearn and Pym's logic of Bunched Implication. The calculus is simple, sound, complete, and enjoys cut-elimination. We show that all the structural rules in our proof system, including those rules that manipulate labels, can be localised around applications of certain logical rules, thereby localising the handling of these rules in proof search. Based on this, we demonstrate a free variable calculus that deals with the structural rules lazily in a constraint system. A heuristic method to solve the constraints is proposed in the end, with some experimental results

    Proof Search Specifications of the pi-calculus

    Get PDF
    International audienceWe specify the operational semantics and bisimulation relations for the finite pi-calculus within a logic that contains the nabla quantifier for encoding generic judgments and definitions for encoding fixed points. Since we restrict to the finite case, the ability of the logic to unfold fixed points allows this logic to be complete for both the inductive nature of operational semantics and the coinductive nature of bisimulation. The nabla quantifier helps with the delicate issues surrounding the scope of variables within pi-calculus expressions and their executions (proofs). We illustrate several merits of the logical specifications permitted by this logic: they are natural and declarative; they contain no side-conditions concerning names of variables while maintaining a completely formal treatment of such variables; differences between late and open bisimulation relations arise from familar logic distinctions; the interplay between the three quantifiers (forall, exists, and nabla) and their scopes can explain the differences between early and late bisimulation and between various modal operators based on bound input and output actions; and proof search involving the application of inference rules, unification, and backtracking can provide complete proof systems for one-step transitions, bisimulation, and satisfaction in modal logic. We also illustrate how one can encode the pi-calculus with replications, in an extended logic with induction and co-induction

    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents

    Get PDF
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting to embeddings, semantic arguments, or interpreted connectives external to the underlying logical language. A novel feature of our proof includes an orthogonality condition for defining duality between interpolants
    • …
    corecore